1. Geodesics

We have seen that if we have a vector V? at one point x then we van construct a
vector at a neighbouring point x 4+ dx such that the new vector is the ‘same’ as the vector
at the original point. This is called ‘parallel transporting’ the vector from x to x + dx.

The change in the components of the vector was
§V*' =T V7oa" (1.1)

Now suppose that we wanted to ask if a given curve was a ‘straight line’ on the manifold.
Let us start with one point P on the curve, proceed in a given direction along the curve,
and denote the distance along the curve from P by the symbol"z\ The vector

dx’
ds

R
=) & (1.2)

Vi(z) =

is obviously tangent to the curve at the point z. W o see that

&L
xﬂwd2§§>1 (1.3)

3

so V' is a unit vector. We ‘parallel tran @’ this vector to another point on the curve
at x 4+ dx, and ask: is the transporte 'E\@Ctor equal to tangent vector that was already
defined at the point x + dz throughAL2)? Clearly, if it is not, then the curve cannot be
called ‘straight’. If it is, then we (@?magine that we have looked at a small patch around
the point x, put coordinates %Qt that look locally Cartesian, and then transprted the
vector to x + dx as if we Wer@eeping the components of the vector constant in Cartesian

coordinates. Thus to ha\@Q';straight line’ we need
Viz +dx) = Vi(z)+ 6V =Vi(z) - ;k(aj)Vj(x)éxk (1.4)

We can rewrite this as

Vi +dx) —Vi(z) .ok
R = —T%.(z2)V (x)—ds (1.5)
or Jv
Vi
E;+PMVW*:0 (1.6)

If the tangent V defined for a curve satisfies this equation then that curve is a ‘straight

line” on the manifold and is called a geodesic.
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There is one possibility that we did not discuss above: what happens if the vector V*
transported to x + dx happens to be parallel to the tangent at x + dx, but is not of unit
length after the transport? Will we call the curve a geodesic in that case?

In fact we can easily see that this will not happen. Upon parallel transport, a vector

may change its components but will not change its length:

(S(Vingij) = 2(5V’)V]gu + ViVj(Sgij = —QFianméx”ngij + Vingij’n(s.’lin
= _gik[gkm,n + Jkn,m — gmn,k]gijvmvj(sxn + Vingij,néxn

. o (1.7)
= _[gjm,n + 9inm — gmn,j]vmvj(sxn + VZV]gij,n(sxn
=0
Q)
where in the last but one step we observed that two of terms in the box bracket

cancelled since taken together they were antisymmetric @ 5 while the quantity V™ V7
was symmetric. \k_
In fact, more generally, we see that the innerQ%Huct between two vectors will also

not change under parallel transport: Q

5(Vingij) = ((5‘/")1/1/‘7%‘7 + VZ 5WJ gUQ% Wjéglj

— _r;,mvmax"Wng wméx"‘/lgw + ViWI Gijnox"

1 . )
= __glk [gkm,n + Jkn A_ gmn,k]gijvmwjé.’lfn

'y §V | o (18)

- §gjk[gkm,n kn,m — gmn,k]guwmvz(sxn + VZWJgij,néxn

_Q[gjm,n +%,m - gmn,j](vmWJ + VJ Wm)éxn + VlWJgij,néxn

—0 Q

2. Covariant derivative

Recall that the motivation for defining a connection was that we should be able to
compare vectors at two neighbouring points. Suppose we are given a wvector field - that
is, a vector V(x) at each point #. Then we can compute the derivative of this vector
field. Thus we take two points, with coordinates z* and z* + 6z°. The vector at x has

components V*(z). The vector at = + dz has components

oV?

Vi(z +0x) = Vi(z) + e

ox” (2.1)




To compare this latter vector with the vector at x we transport the vector at x also to the

point x + dx. This transported vector has components
Vi(z) — ;k(x)VJ (z)ox” (2.2)

Thus the ‘true’ change in the vector between z and x + dx is

Sxh 4 I‘;-k(x)Vj(x)éxk = [% + F;k(x)Vj(x)]éxk (2.3)

oV’
ozk

Thus we may define a ‘true’ derivative, called the covariant derivative by

i — 8Vi(x)

K=o T [l(@)V (2) \2‘\ (2.4)

R

the first term takes into account the fact that the compoéxgs of V' are changing, while the
second removes the part of this change that is simpl e to the fact that the coordinates
themselves are changing. §

How do we find the covariant derivative of a@ﬁvam’ant vector W;? One way is to redrive
the connection for a covariant vector just way we did for a contravariant vector, by
starting with flat space where transport i§br.ivial, and changing to curvilinear coordinates.
But we can instead use the fact that und above in (1.8), namely that the dot product
between two contrvariant vectors '§Vnchanged by parallel transport:

0=056(VWigy) = 5(Vin:; (VW + V(W) = -4, VFez!W; + Vi(6W;)  (2.5)

Since this relation must éd- true for all possible V', we can set to zero the coefficient of

V¥ for each k in the above equation:
W), = It W; 2! (2.6)

Thus the connection is related to that involved in transporting the contravariant vector,
but note that the overall sign is different, and that the contraction of indices is different.
The notation of up and down indices for contravariant and covariant vectors helps us to
keep track of how the indices should be contracted here. Recall however that though
Vi and W; are vectors, F;k does not transform like a tensor, so the index structure is a

pnemonic and not a tensor index contraction.
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We can now define a covariant derivative for covariant vectors, by following the same

chain of reasoning that we followed for contravariant vectors. We find

oW,

Wik = Bor

N (2.7)
Let us now compute the covariant derivative of the metric tensor:
9ijik = YGij.k — Fékglj - Fékgil

1 1
= Gijk — —le (Gmik + Gmk,i — Gik,m)9ij — —le (Gmjk + 9mk.j — Gjk,m)9ti

% X 2 (2.8)
= Gijk — §[gji,k + ki — Gik,j) — §[gij,k + Gik,j — Gjk,i]

=0 &\2\\

This fact is very significant, since we find g

Visk = (V'9ij)k = Viegij + V@‘k = Vii9ij (2.9)
Thus we can covariantly differentiate a contrava, vector, and then lower the contravari-

ant index, or lower the index first and then COQQute the covariant derivative - in either case
we will get the same answer. thus the oper@)n of raising and lowering indices commutes
with the operation of taking a covarian g}vative. This fact will substantially reduce the
kinds of geometric objects that we ¢édmake by starting with a given tensor and taking
covariant derivatives. Q %V
D
3. 4-velocity Q‘Q—
da’

In Newtonian mech&cs velocity is a vector with three space components: “7-, i =
1,2, 3. But with special relativity we needed to treat time on the same footing as space. In
this case what shall we use as the denominator in the expression for the velocity? Along
the world line of a particle, if we take to infinitesimally separated points, then a coordinate

independent quantity is the ‘proper distance’ ds between the points:
ds* = dt* — da? — dx3 — dai (3.1)

The components of 4-velocity (called 4-velocity since it has four components) are defined

as
dt dzt dz? dz?
0 1 2 3
U U U = U - 2
ds’ ds ds ds (3 )



If the particle is moving slowly, then dz/dt << 1, and

ds = dt[1 — (Z—f)?]l/? = dt + O(v?) (3.3)

Thus in the limit where we expect Newtonian physics to be valid, we get
U'~1, U'=mo', U?=v? U3=x? (3.4)

and the four velocity U has the same data as the usual velocity . In curvilinear coordinates

on flat space and more generally in curved spacetime, we will similarily have
ds® = g;;(z)dz"dz’ \ (3.5)

where at each point z the metric g;; represents one timehk?%d three spacelike directions.
The 4-velocity is %

daji \k"
= Q?* (3.6)

We will often call the 4-velocity just the velocr%_Q
We observe that Q.
: dtZN(dT)?
U'U; = a2
\ S
Thus U is a timelike 4-vector. We ca \%e that it is a vector of contravariant type, since it

=1 (3.7)

is defined through the separation b?veen two points on spacetime. Thus U has its index

Q
S

4. Raising and loweri§ﬂ:‘dices

Suppose we have a contravariant vector V* at some point = of the manifold, and a

written ‘up’.

covariant vector W; at the same point. Let us form the object
f=V'Ww; (4.1)

If we transform to new coordinates we see that

Z VW, = VW, = VW, = f (4.2)

thus f transforms as a function (which we also called a scalar); it has no free indices,

and we see that when indices are ‘contracted’ in the above fashion then we do not need



to worry about the transformations that act on such indices - the transformations cancel
each other out. If V, W were vector fields, we would obtain a function f(z) over spacetime
b carrying out the contraction (4.1) at each point.

We had seen that the metric tensor had two covariant indices. Let us start with a

contravariant vector V* and form the contraction
gi;V? (4.3)

It is easy to check that this transforms to a new coordinate frame as

_ Ox™ Q™ OgI , Ox™

: ox™
Y1) — - > n L p

Thus again only the free index participates in the trans Qmation law, but the transfor-
mation law of the quantity (4.4) is that of a covariant wettor; the two lower indices of the
metric and one upper index of V have resulted i QP object with one lower index. We

denote this object by the same symbol V', but W@a lower index:
v, _Q%Vj (4.5)
N

The fact that we use the symbol V stiLléPjustiﬁed because if we assume that we are given

the metric, then the information in ¥.s contained in the information in V; and vice versa:

we can get %

éy] = glg VE = §ivh = Vi (4.6)

which converts a covaria@fctor Vi to a contravariant. vector. Thus the metric and the

inverse metric can be used to raise and lower indices on vectors.

5. The Newtonian limit

With this formalism of geodesics on curved manifolds we should be able to reproduce
in some limit the law of Gravitation in Newton’s theory. The key difference between general
relativity and Newtonian mechanics is of course the fact that the latter is not relativistic;
thus we should look for a limit where all particle velocities are low compared to the speed
of light, or with ¢ = 1, small compared to unity. Thus ¢ will be the small parameter in

our approximation.



Consider the geodescic equation (1.6). Note that for i = 1,2,3

dU? d dxt N d?xt

ds  ds ds  di? (5:1)
Further,
Ul~1, Ul<<l1, i=1,2,3 (5.2)
Thus we get )
o~ ~Thy (53)
Now we assume that the spacetime is nearly flat, so that the metric is
9ij = Mij + hijy hip <<1 SO\ (5.4)
<

We also assume that the metric is static, so that no comgént depends on the coordinate
0
x” =t. Then

, 1 1
I'bo = —5900,i = —5hooyg Nr=1,2,3 (5.5)
¥
and the geodesic equation becomes Q.

&t 1hQQ-' 1,2,3 (5.6)
~— 1= .
dt2 2\Q ’ ) &
We should compare this to the equaﬁ@xpected from Newton’s theory
v d?z’
= ¢ 5.7
& T (5.7
where ¢ is the gravitational @tential. Thus we see that we need to identify
Q hoo = —2¢ (5.8)
For a point mass source M we have
6=-—2 (5.9)

Thus the metric must have

) (5.10)
Indeed, the exact metric for a point mass source is the Schwarzschild metric

dr?

)dt? — o t r2(d6* + sin® 0d¢?) (5.11)

2GM

2
= 1—
ds” = ( .
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Let us compute the period of circular orbits in this metric. Let the orbit have radius

rg. Then

ds2 _ dsds _ ds

2 r
d“r d dr dU _ 0 (5.12)

But by the geodesic equation,
dur

=Ty Ui (5.13)

: - 0 _ do 770 _ dt
But the only components of the 4-velocity that are nonvanising are U” = ¢-,U" = ¢,

since only the coordinates #,t¢ change along the orbit. Thus we find
0 =I3,U°U% + T5,U°U° + zr:QUi%f\ (5.14)

K
We have e

. . 2GM
60 — 07 FOO = _(1 -

) °GM  GM

From the geodesic equation we find Q-QQ
vt do LGM
fe g
)
Thus the period of an orbit of radiu;@s
QT
T = 27r(G—M)1/2 (5.17)

In Newtonian graviter’vmuld find the angular velocity by equating the centripetal

acceleration to the gravi&ional force

do

(Y GM
dt

)r = 5 (5.18)
which also gives the time period (5.17). While for large r where the metric is close to
the flat one and the particle velocity in circular orbits is slow we would expect the time
periods to be approximately the same between the general relativistic treatment and the
Newtonian treatment, we see here that by a coincidence the expressions are in fact identical
for all r. However as we will see now this does not mean that we can have such circular

orbits for all r in the relativistic theory, unlike the case for the Newtonian theory.
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6. Gravitational redshift

Suppose we have a person who stays at a fixed radius r > 2M in the spacetime with
metric (5.11). Let this person emit some periodic signal - for example it might be a light
wave with a frequency v, or he may just spray bullets from a gun at a fixed interval. We
assume that in his own frame these periodic events have a time separation AT. Let the
light wave or the sequence of bullets reaches a person standing fixed at some other point,
say at v’ > 2M. What will be the percieved interval between the periodic events for the
person at r’?

We assume that when the person at r says that the events‘hfkve a separation AT then

he means that the proper time along his world line betweeAfwo successive events is AT

Thus ev

ds = (1 — )2 Ak~AT (6.1)

Since the spacetime is static, the intervals @Sween the events at ' will be fixed in the

sense that they will occur at the same sepz@ans At. But this gives for the proper time

/'5\\

r_ _2 1/2 A4 1_22—/M 1/2
ds' = (1 )P = (- AT (6.2)

Thus the frequency of a lig@wave would appear to be lower that the one emitted to

along the worldline of the observer at r

an observer who sits at lius 7/ > r. This effect is called gravitational redshift. 1t is
somewhat different from the doppler shift that we encounter in studying sound waves r
light waves. If we move at a velocity v compared to the source emitting a sound wave,
then the fractional change in the frequency of the sound wave will be appriciable if we
move with a speed that is of the order of the sound speed. but this same speed would give
a very small fractional change for the frequency of light waves: to get a significant chage
for light we would have to move with a speed comparale to the speed of light. But the
gravitational redshift that we discussed changes the frequency of any motion by the same
proportionality factor, once we fix the positions r and /. Thus gravitational redshift is a

property of the curved spacetime itself, and is a central feature of general relativity.
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7. Curvature

Let us take the second derivative of the vector field that we had above. Then we get

an expression
Velia =V%ea (7.1)

If we had been computing ordinary partial derivatives of the components V¢ with respect

to the coordinates £°, £¢ then these partial derivatives would commute

62va B 82va
0EcoEd — 9gdoge

(7.2)
But the covariant derivatives in fact do not commute in general. We have
>
Ve =VeetTyVi (7.3)
V.. is a tensor with one contravariant index and one @riam index. So we have

Viig = (VO o+ T8,V 4 4 T VIQX T o -
=V g+ T8 VI + 10,00, + 14V — T/ Ve,

As written, the above expression has both o&xry partial derivatives of V' as well as some
covariant derivatives of V. We could COV%% them all to ordinary partial derivatives plus
some connection terms, but what We@t to do is to compare the above expression with

the two covariant derivatives takeg‘the reverse order. Thus we have
Ve = Va%zsnggf,cvf +T% V7 + T8V T Ve (7.5)

If we take the difference he above two relations, we will find by (7.2) that the first
terms on the RHS will cancel. The last terms on the RHS cancel as well, since I'?; =T'G,..
There are two terms left in each expression with first order derivatives of V', but of these
one term is a partial derivative while the other is a covariant derivative. Expanding the
covariant derivative involved here, we get
Vea—V%ae =T VI =T VI + T4, 19V -8 19,V/

= [Fgf,d - gf,c + Fggrs}c - Fggré}d]vf (76)

= —R%.qV/
Note the remarkable fact that even though the second order covariant partial derivatives

of V do not commute, the difference between the derivatives taken in the two different
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orders is an expression that involves only V' and not any of its derivatives. The effect of

the noncommutation has been summarised in the Riemann curvature tensor
Rade = ng,c - I‘lc)bc,oi + Fgfrl]:d - F;frl]:c (77)

It is not evident from the expression above that this quantity should be a tensor, since it
involves the connection, which is not itself a tensor, and further there are ordinary partial
derivatives of this connection. But let us consider geometrically what Rj., signifies. In
the above calculation we had assumed that V' was a vector field, i.e. a vector at each
point of the space. But as we saw the final expression defining the curvature through (7.6)
did not involve any derivatives of V', so we did not really need to know how the vector
field changed from point to point, which suggests that we shzu% be able to define R%p.q
using only a vector that is assumed to exist at one point§. here we wish to define the
tensor). Thus take a vector V¢ at z, and parallet translﬁc it to a point x 4 dx. then the
components of the transported vector will be QV\‘:

Ve - ;C@@xc (7.8)

where we have written explicitly the fact t@ the connection is evaluated at x. Now we
transport this vector further to a point dx + 0x. Then the components of the vector

will be &
[V = Tfu(0)VF 8] = Tg (@ 62)[V¥ — T, (2)V7 6262 (7.9
= [V = T5u(@) VI 63 [T(w) + Ty 828V — T, (2)V 5252 |

Now suppose we had donQ-he transports in the other order - first moved the vector to
z + 6z and then to z + @-1— dx which is the same point as the one reached before. then

we would get

Ve — S‘cd(x)Vfod] —Tg.(z + Sx)[Vg — F?d(x)Vfod]éxc

) ) ) (7.10)
= [V — ?d(x)Vfdxd] — [Cge(x) + Fgc’kéxk][Vg — F‘}d(x)Vféxd](ch

Subtracting (7.10) from (7.10) we get for the difference of the change in V' between the
two paths

[~Thge+ Dhe g + TgThe — DTl V002°05 = —R%yeqVP 52677 (7.11)
So we see that curvature describes the difference in parallel transport along different paths.
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