Assignment 1

1. Since $||f_n - 0||_2 = \sqrt{\int_0^1 |f_n(t)|^2} = \frac{1}{\sqrt{n}} \to 0$ as $n \to \infty$. Thus, f_n converges in $L^2[0, 1]$ norm to 0. Assume that given any $\epsilon > 0 \ \exists N(\epsilon)$ such that $|f_n(t) - 0| < \epsilon \ \forall t \in [0,1]$ and $\forall n > N(\epsilon)$. But, since $|f_{N+1}(t) - 0| = 1 > \epsilon$ for $0 \le t \le 1/(N+1)$ and $\epsilon < 1$, we can always establish a contradiction.

Note that the given sequence $\{f_n(t)\}$ converges pointwise to the following f(t)

$$f(t) = \begin{cases} 0 & t \in (0, 1] \\ 1 & t = 0 \end{cases}$$
 (1)

Since $\lim M_n = 1$ where $M_n = \sup_{t \in [0,1]} |f_n(t) - f(t)| = 1$, $\{f_n\}$ does not converge uniformly to f(t).

- Since || f_n 0||₂ = √∫₀¹ |f_n(t)|² = √∫₀^{1/n} ndt = 1/√n → 0 as n → ∞, we conclude that f_n → 0 in L²[0, 1] norm as n → ∞. lim_{n→∞} f_n(0) = lim_{n→∞} √n = ∞.
 Given ε > 0, choose N(ε) = 1/ε so that |f_n(t) 0| ε ε ∀n > N and ∀t ∈ [0, 1]. Thus {f_n(t)} converges pointwise uniformly to 0. Since ||f_n(t) 0||₁ = ∫₀[∞] f_n(t) = ∫₀ⁿ 1/ndt = 1, ||f_n 0||₁ → 0 as n → ∞. Thus, {f_n} does not converge in L¹[0, ∞] norm to 0.
 Change of variable problem. Easy!
- 5. An inner product calculation. Note that both $\phi(t)$ and $\psi(t)$ have norm 1. Problem 4 shows that we need to multiply both $\psi(2t)$ and $\psi(t)$ and $\psi(t)$ have normalize them. After normalization, these four functions form an ON asisof a subspace of $L^2[0,1]$. $\hat{f}(t)=\frac{1}{2}\phi(t)-\frac{1}{4}\psi(t)-\frac{1}{8}\psi(2t)-\frac{1}{8}\psi(2t-1)$; where $\hat{f}(t)$ is the projection of t on the subspace spanned by these four functions.
- 6. Apply Gram-Schmidt orthogonalization process. The first four set of polynomials: 1, x, $(3x^2 -$ 1)/2, $(5x^3 - 3x)/2$. Of course, you can normalize these polynomials to get an ON basis.
- 7. Since P_0, P_1, \dots, P_{n+1} form an ON basis for the set of polynomials of order n+1: we can write

$$tP_n(t) = \sum_{k=0}^{n+1} c_{nk} P_k(t)$$
 (2)

where

$$c_{nk} = \langle tP_n, P_k \rangle \tag{3}$$

It follows from the fact that P_n is orthogonal to every polynomial of order less than n, that

$$c_{nk} = \langle tP_n, P_k \rangle = \langle P_n, tP_k \rangle = 0 \tag{4}$$

for k < n - 1. Therefore, equation 2 simplifies to

$$tP_n(t) = c_{n,n-1}P_{n-1}(t) + c_{n,n}P_n(t) + c_{n,n+1}P_{n+1}(t)$$
(5)

Using the notation of the question:

$$tP_n(t) = a_n P_n(t) + b_n P_n(t) + c_n P_{n-1}(t)$$
(6)

where
$$a_n = \langle tP_n, P_{n+1} \rangle = \langle P_n, tP_{n+1} \rangle = \langle tP_{n+1}, P_n \rangle$$
; and $c_n = \langle tP_n, P_{n-1} \rangle$. So, $c_n = a_{n-1}$.

- 8. Note that for t^3 , there are discontinuities at $\pm k\pi$ for $k=1,2,\cdots$, so more terms are needed to get better approximation.
- 9. See Sec 1.7 of the notes on Linear Operators.

We have to consider the following two cases:

- (a) Assume that (1) holds. We need to prove that (2) can NOT hold. if (1) holds, then for any $v \in V \exists u \in U$ such that $\mathbf{T}u = v$. Assume that there is a nonzero $v_0 \in V$ such that $\mathbf{T}^*v_0 = 0$. Then $\langle u, \mathbf{T} * v_0 = 0 \rangle_U \ \forall u \in U$. Use the adjoint of \mathbf{T}^* , $\langle \mathbf{T}u, v_0 \rangle_V = 0$, and $\forall u \in U$. Based on our assumption, $R(\mathbf{T}) = V$. So, $v_0 \perp v \ \forall v \in V$. Thus, $v_0 = 0$, contradicting our assumption that $v_0 \neq 0$. Q.E.D.
- (b) If $v \notin R(\mathbf{T})$, that means $\nexists u \in U$ such that $\mathbf{T}^*u = v$. So let us find v_0 such that $\mathbf{T}^*v_0 = 0$ (i.e. the least squares problem). Find the projection of v on R(T), and let $v_0 = v proj(v) \perp R(\mathbf{T})$. That means $\langle \mathbf{T}u, v_0 \rangle_V = 0 \ \forall u \in U$. Now using the adjoint operator, we have $\langle \mathbf{T}u, v_0 \rangle_V = \langle u, \mathbf{T}^*v_0 \rangle_V = 0$, $\forall u \in U$. Note that $v_0 \neq 0$ because $v \notin R(\mathbf{T})$ and $pro(v) \in R(\mathbf{T})$. Thus, $\mathbf{T}^*v_0 \equiv 0$.
- 10. $\log y = \log a + bx$. You can construct a system of 7 linear equations in two unknowns $\log a$ and b. You can use matlab to find the solution. In general, if you want to estimate the solution of Ax = b, then solve $A^TAx = A^Tb$. If A^TA happens to be invertible (as is the case here), then $x = (A^TA)^{-1}A^Tb$. The first solution is y(2.0) = 2.22.